The following Calculation Policy outlines the methods we teach at Oldfield Primary School for the four main areas of calculation: addition, subtraction, multiplication and division. The policy demonstrates a clear progression of skills from EYFS through to Year 6, therefore there is some overlap in consecutive year groups as skills are revised and built upon. In all year groups, the Concrete Pictorial Abstract (CPA) approach is followed - please see below.

Concrete: Handling physical objects
Pictorial: Looking at pictures and models
Abstract: Using only numbers and symbols

In class, children are regularly given opportunities to then apply these calculation skills to a range of age-appropriate mathematical problems and varying contexts (these are not included in the policy).

This calculation policy has been developed by the maths coordinators, agreed by all teachers at Oldfield and shared with support staff, governors and parents.

Counting, number recognition and ordering is taught before to allow children to access the learning and understanding of calculations. Techniques such as touch, count and move must be taught beforehand.

- Say a number sentence orally, then move onto written number sentences
- Board games for subtraction - moving counters along a board
- Breaking towers of cubes into smaller groups
- Using the touch, count and move technique for subtraction

- Pegs on a hanger for subtraction
- Using tactile objects for hands on maths
- Simple worksheets with pictures to support

Division (referred to as sharing in EYFS)

- Splitting cubes or counters into groups to see how a whole number can be shared equally. Discussing the problem orally and in small groups
- Using simple
worksheets with pictures to support

Multiplication (referred to as grouping in EYFS)

- Learning number doubles to 10
- Counting in 2's, 5's and 10's
- Putting socks into pairs and counting
- Using a mirror to double objects
- Counting $2 p$ coins

Addition Year 1

$+-=$ signs and missing numbers

Calculations should be written either side of the sign so that it is not just interpreted as 'the answer'.
$2=1+1$
$2+3=4+1$

Missing numbers need to be placed in a all possible places.
$3+4=\ldots \quad . . .=3+4$
$3+\ldots=7 \quad 7=\ldots+4$

Adding sets of objects and numbers with Numicon, counters and pictures, including number bonds.
0008
$6+4=10$

Counting on with a
number track, tens
frame and number line.

$7+6=$

Introduction to the part-whole model

Addition Year 2

Missing number problems
$14+5=\ldots 32+\ldots+\ldots=100 \quad 35=1+\ldots+5$

Addition to 100

Counting on using a number line, counters, Numicon, bar models and other visual representations.

Number line method $=34+28$

Bar model $30+90=$

Partitioning for addition

Using dienes and part-
whole model to partition 2-
$66+18=$
\qquad
digit numbers. Add the tens and ones together and then recombine.

Introduction to the expanded written method

Addition Year 3

Missing number problems
More complex missing number problems, with increasingly large numbers e.g. $25+\ldots+95=137$

Bar model

Mental

?	
424	113

strategies

Including partitioning, number lines and jumping to the next multiple of 10 .

Partitioning for addition (up to 1000)
Partition both numbers and recombine (see Year2) Count on by partitioning the $2^{\text {nd }}$ number only e.g.
$247+125=247+100+20+5$

$$
=347+25
$$

$$
=372
$$

(Children need to be secure adding multiples of 10 and 100 to any 3 digit number e.g. $457+100$)

Expanded column addition

Modelled with various representations including place value counters and dienes.

Leading to children having a secure understanding the exchange between tens and ones.

$$
275
$$

Formal column addition Working with numbers up to
1000.

469
$+\quad 744$

Subtraction Year 1

Missing numbers problems
Missing number is in different positions e.g.
7=9-...
$15-9$ = ...
$20-\ldots=9 \quad . .-\ldots=11$ (multiple solutions)

Understanding subtraction as take away
Pictorial methods, Numicon, counters, multi-link, number track/line etc.

Understanding subtraction as finding the difference Counting on to find the difference as well as counting backwards.

| (1) (2) (3) (4) (5) (6) (7) (8) | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | (1) (2) (3) (4) 5 (5) (6) | 7 | (8) | (9) | 10 | (11) | (12) | $(13$ | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tens frame to show subtraction up to 10 and 20 .

Part-whole model Beginning to explore the inverse link between addition and subtraction.

Subtraction Year 2

Missing number problems
Including numbers up to and beyond 100 e.g.
$52-8=\ldots \quad \ldots-20=25 \quad 22=\ldots-21 \quad 6+\ldots+3=11$

Continue to use and range of different representations for subtraction (see Y1)
Use number lines to model take-away and difference.
Number line method

Bar models

$100-30=70$

Dienes

Using dienes to subtract tens and ones. Beginning to explore exchange when crossing tens.

$25-13=12$

Understanding the inverse relationship between addition and subtraction.

Subtraction Year 3

Missing number problems More complex missing number problems, with increasingly large numbers. Represented using the part-whole model (right).

Mental methods

Supported by a range of models, including using the inverse to add when the numbers are closer together. Bar model

$260-87=173$

Expanded

 column subtraction Modelled with various representations including place value counters,| Expanded Column Subtraction | | | | |
| :--- | :--- | :--- | :--- | :--- |
| 2 0 0 3 | 4 | 4 | | |
| | | 2 | 0 | 2 |
| 200 | 10 | 2 | or 212 | | partition cards (see right) and dienes.

Leading to children having a secure understanding the exchange between tens and ones.

Formal column
subtraction Working with numbers up to 1000

Multiplication Year 1

Understand that multiplication is related to doubling and finding 'groups of' the same number (repeated addition.)

Practical resources for counting groups. Concrete objects: Numicon, counters, Unifix cubes and pictures.

$3 \times 5=$
$5+5+5=15$

Use arrays to understand that multiplication can be done in any order (commutative).

3 rows of 5

$3 \times 5=15$
5 rows of 3
$5 \times 3=15$

Multiplication Year 2

Expressing multiplication as a number sentence using x
Continue to use grouping, multiplication arrays and number lines to understand that multiplication is repeated addition and that it can be done in any order (also see Y1). Include multiplications beyond 2,5, and 10 times tables.
$4 \times 6=6 \times 4$

6 jumps of 4
Children develop their times table fluency by skip counting using a counting stick, counting concrete objects and using pictures (2 's, 5's 10's and 3 's).
$\begin{array}{lllllllllllllllllllll}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60\end{array}$

Understanding the inverse and solve missing number problems (missing numbers in different positions).

$$
\begin{array}{ll}
7 \times 2=\ldots & \ldots=7 \times 2 \\
7 \times \ldots=14 & 14=7 \times \ldots \\
\ldots \times 2=14 & 14=\ldots \times 2
\end{array}
$$

Begin to understand multiplication as scaling e.g. 3 times bigger/taller/as many.

Understand that doubling $=$ x2 and be able to partition to double 2 digit numbers.

Multiplication Year 3

Continue to use previous methods for multiplying numbers up to 12 (see $y 1 / Y 2$), including more complex missing number problems.

Mental methods
Doubling 2-digit numbers using partitioning.
Increasing fluency in all times tables up to 12×12.
Demonstrating multiplication on a number line
jumping in larger groups
$13 \times 4=10$ groups $4+3$ groups of 4

Written methods (progressing to 1 digit x 2 digit) Developing written methods first using visual images.

Developing onto grid method.

Leading to short multiplication.

	7	2
x		7
5	0	4
	1	

Division Year 1

Children must have secure counting skills - being able
to confidently count in 2 's, 5's and 10's.

Group AND share small quantities

Understanding the difference between the two concepts.
Develops importance of one-to-one correspondence.

$$
15 \div 5=3
$$

15 shared between 5

Children should be taught to share using concrete apparatus.
Grouping
Children
should

sharing one at

 a timeapply their counting skills to develop some understanding of grouping.
$15 \div 3=5$

Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 .
$15 \div 5=3$ There are 3 groups of 5 .

Children should be able to find $1 / 2$ and $1 / 4$ and simple fractions of objects, numbers and quantities. Introduction to the part-whole

$=$ signs and missing numbers		
$6 \div 2=\square$	$\square=6 \div 2$	
$6 \div \square=3$	$3=6 \div \square$	
$\square \div 2=3$	$3=\square \div 2$	
$\square \div \triangle=3$	$3=\square \div \triangle$	

Know and understand sharing and grouping introducing children to the \div division sign.

Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations like sharing circles.

Grouping using pictures and a number line Group from zero in jumps of the divisor to find out 'How many groups of 3 are there in 15 ?'.
$15 \div 3=5$

Arrays

Continue work on arrays. Support children to begin to understand how multiplication and division are inverse.

Children begin to make the link between $1 / 2$ as dividing by 2 and $1 / 4$ as dividing by 4 .

Division Year 3

$\doteqdot=$ signs and missing numbers
Continue using a range of equations as in year 2 but with appropriate numbers.
Grouping
How many 3 's are in 24 ? $24 \div 3$ can be modelled as:

Becoming more efficient using a number line. Children need to be able to partition the dividend in different ways.
$14 \div \mathbf{2 = 7} \quad 7$ groups of 2

Remainders

$\mathbf{1 7 \div 5} \mathbf{5} \mathbf{3}$ re 3 groups of 5 and 2 left

$17 \div 5=312$

Place value counters can be used to support children apply their knowledge of grouping.

$$
60 \div 10=
$$

How many groups of 10 in 60?
$600 \div 100=\quad$ How many groups of 100 in 600 ?

Formal written method

Short division (bus stop method)

$$
045
$$

$$
\begin{array}{r}
\text { Lens OVivion Method } \\
212 \\
12 \begin{array}{|r|r|}
\hline 2544 \\
-\underline{24} \\
14 \\
-12 \\
24 \\
24
\end{array}
\end{array}
$$

$$
83^{36^{4} 0}
$$

Long division (extension)
Children secure understanding of link between fractions and division.

Addition Year 4

Missing number/digit

problems

Including within column method (see right).

Mental methods should continue to develop,
supported by a range of models and images, including the number line and 100 square.

Expanded column addition modelled with place value counters and dienes (see Y3 also).

Formal column addition including

 regrouping where required Once the expanded method is secure, children move on the formal column addition method.Children need to understand 0 as

$$
\begin{array}{r}
1845 \\
+0526 \\
-\frac{2371}{11}
\end{array}
$$

place holder and develop
confidence working with 4 digit numbers.

Addition Year 5

Missing number/digit problems

Whole numbers up to 1 million and decimal numbers.

Missing digits problems within the column method, including where there are multiple possible solutions.

Mental methods

Should continue to develop and become more fluent with increasingly large numbers. (See previous years for supporting models).
$12462+2300=(12000+2000)+(462+300)=14762$

Written methods

Formal column addition

TO.t h
14.62
+12.63
27.25

Securing confidence in working with numbers up to 1000000 and applying the same method to add decima numbers.
(Place value counters and dienes may continue to be used alongside the column method to support those less confident.)

Problem solving
Addition (and subtraction) is applied to a range of multi-
step problems in varying contexts. A range of concrete

objects and visual representations are used to secure understanding.

Addition Year 6

Missing number/digit problems

Whole numbers up to 1 million and decimal numbers.

Mental methods

Should continue to develop, supported by a range of models and images including, the number line (see Y4/5).

Written methods

As Year 4/5
progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be
 secured. Continue with calculating with decimals, including those with a different number of decimal places.

Problem solving

Addition (and subtraction) is applied to a range of multi-step problems in varying contexts, including negative numbers, decimals and mixed numbers. A range of concrete objects and visual representations are used to secure understanding.

Written methods

20030
-100104
100108

Expanded column
subtraction (also see Year 3)
Progressing to calculations with 4-digit numbers.

Formal column subtraction

Column subtraction modelled with place value counters to support understanding. Children should be confident working with 4-digit numbers by the end of Year 4.

Subtraction Year 5

Missing number/digit problems
Whole numbers up to 1 million and decimal numbers. 1000000 - $=999009 \quad 6.45=6+0.4+\ldots .$.
$600000+$ \qquad $+1000=671000$

Mental strategies

Supported by empty number line. Rounding to the nearest multiple of 10 .

$9,002-8,937=$

Adjusting e.g.
$34600-2490=$
(round to 2 500)
$34600-2500=32100$
$32100+10=32110$
(adjust back by adding 10)

Written methods

Formal column subtraction
Increasing confidence in working with numbers up to 1000000 and applying the same method to decimal numbers.
(Place value counters and

(Place value counters and dienes may continue to be used alongside the column method to support those less confident.)

Problem solving
Subtraction is applied to a range of multi-step problems in varying contexts.

Subtraction Year 6

Missing number/digit problems
Whole numbers
up to 1 million and decimal numbers. Problems represented in different ways

e.g. number pyramids.

Mental strategies

Should continue to develop, supported by a range of models and images including, the number line (see Y4/5).

Written methods

As Year 4/5 (see models), progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue with calculating with decimals (including those with a different number of decimal places e.g. 3.45-9.496).

Problem solving

Subtraction is applied to a range of multi-step problems in varying contexts, including negative numbers, decimals, fractions and mixed numbers.

Multiplication Year 4

Pupils should be able to recall multiplication and division facts for multiplication tables up to 12×12

Mental methods

Counting in multiples of $6,7,9,25$ and 1000, and steps of $1 / 100$. recognise and use factor pairs and commutativity in mental calculations
use place value, known and derived facts to multiply and divide mentally, including:
multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.

Concrete Partitioning to make multiples

Written methods (progressing to 3 digit $\mathbf{x} 2$ digit)

 multiply two-digit and three-digit numbers by a onedigit number.Grid Method used as in Y3.

Expanded Long multiplication

(Column method) is used to multiply place value which are then added together to find the final total.

Division is used as an inverse
 operation to check answers.

Confident learners are able to use short multiplication methods.

Multiplication Year 5

Pupils are familiar with short multiplication and
develop their use of Long multiplication to solve 3 digit and four digits by a 2 digit number.

Short multiplication

24×6 becomes
24

$$
\begin{array}{ccc}
\times & & 6 \\
\hline 1 & 4 & 4 \\
\hline & 2 &
\end{array}
$$

Answer: 144
342×7 becomes

$$
\begin{array}{r}
342 \\
\times \quad 3 \\
\hline 2394 \\
\hline 21
\end{array}
$$

Answer: 2394

Multiply multi-digit numbers up to 4 digits by a twodigit whole number using the formal written method of long multiplication.

Long multiplication

24×16 becomes
24
$\times 1$
$\times 24$

1	4	4
3	8	4

Answer: 384

Multiplication Year 6

Multiply multi-digit numbers up to 4 digits by a twodigit whole number using the
formal written method of long multiplication.

Ratio and proportion
Solve problems involving the relative sizes of two quantities where missing values
can be found by using integer multiplication and division facts. A range of concrete objects and pictorial models are used to apply these to problems.

Division Year 4 $\div=$ signs and missing numbers chunking. secure understanding.

Sharing, Grouping and using a number line and/or

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line or through chunking until they have a

Both the number line and the chunking methods include calculations with remainders as well as without.

Remainders should be interpreted according to the context. (i.e. rounded up or down to relate to the answer to the problem)

Written method for short multiplication continued from Year 3 with appropriate numbers.

045
 $83^{3} 6^{4} 0$

Decimal numbers are introduced to understand fractions and their place value. Pupils explore the relationship of decimals and can divide by 10 and 100 into decimal numbers.
$\div=$ signs and missing numbers
Sharing, Grouping and using a number line and/or chunking.

Answer: 28.8

Concrete and pictorial methods continue to be used throughout UKS2 to represent division, including using remainders and converting these to fractions and decimals.

Division Year 6
$\div=$ signs and missing numbers
Continue using a range of equations but with appropriate numbers.
Sharing and Grouping and using a number line Children will continue to explore division as sharing and grouping, and to represent calculations on a number line and /or chunking as appropriate.

Written methods: Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long and short division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

Short division

Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2

Long division

$432 \div 15$ becomes
$432 \div 15$ becomes

			2	8
	5	4	3	2

$\begin{array}{llll}\mathbf{3} & \mathbf{0} & \mathbf{0} & \\ \begin{array}{llll}15 & \mathbf{3} & \mathbf{2} & \end{array}\end{array}$
$\begin{array}{llll}1 & 2 & 0 & 15 \times 8 \\ & 1 & 2 & \end{array}$

Answer: 28 remainder 12
Answer: $28 \frac{4}{5}$

